If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+96x-400=0
a = 1; b = 96; c = -400;
Δ = b2-4ac
Δ = 962-4·1·(-400)
Δ = 10816
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{10816}=104$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(96)-104}{2*1}=\frac{-200}{2} =-100 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(96)+104}{2*1}=\frac{8}{2} =4 $
| 5(n+3)=4(5) | | 3(y+25)=y+70 | | 3(y25)=y+70 | | 15+z=3z+15 | | (5x-2)+(5x-2)=(8x+10) | | (3x+3)+(6x+1)=(10x-5) | | 20-121÷x=95 | | 20-121÷x=9 | | 6x-2=4(x+3) | | 84/x-9=5 | | 14-3.x=8 | | (7x-6)+(5x+2)+(6x-8)=180 | | 5x–5=(x+1) | | 8y-12=4y+12 | | (2x+10)+(2x-5)+(3x)=180 | | (3x-15)+(x+5)+(x-10)=180 | | (15)(2/3x+10)=(15)(x/5+36/5) | | 2x+14x+9=0 | | 5y+15+5y+40=180 | | 1.5x-2-15= | | 1/(0.4)^x=500 | | 9x^2+4x+400=0 | | 2^n=512 | | 3n+5=13-n | | 50=20x+10= | | 49+2x=30 | | 50-10=20x+10= | | 34=4x+34= | | 3x+3=6-2x | | 2(x-3)=4(3x-4) | | 5/4b-3=-2/8-b | | 19-3k=3+k |